Print Name: \qquad Section: \qquad

JHEDID: \qquad

Statement of Ethics regarding this exam

I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature: \qquad Date: \qquad

- This is a 50 minute closed book exam. No notes, books, or calculators are allowed.
- Present your solution to each problem in a clear and orderly fashion. Show all your work. An answer without justification will not receive full credit.
- This exam contains 6 pages (including this cover page) and 5 questions. The last page is intended for use as scrap paper.

The table on the right is for grading purposes. Please do not write in it.

Question	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total:	100	

Math 109 - Midterm 2 Practice \quad Page 2 of 6

1. (20 points) Find the solution to the following initial value problem

$$
y^{\prime}=e^{x-y} ; \quad y(3)=5
$$

2. (20 points) Find the solution to the following initial value problem

$$
x y^{\prime}+2 y=x^{2} ; \quad y(1)=1
$$

3. Consider the following parametric curve

$$
x(t)=t^{2}+1 ; \quad y(t)=t^{3}-1
$$

(a) (10 points) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ as functions of the parameter t.
(b) (10 points) Sketch the curve labeling all x and y intercepts.
4. Consider the curve given by the polar equation

$$
r=\theta^{2}-\pi \theta
$$

(a) (10 points) Sketch the curve.
(b) (10 points) Find the area enclosed by the inner loop of the curve.
5. (20 points) Determine whether the sequence $\left\{\frac{n^{2}}{n!}\right\}_{n=1}^{\infty}$ converges, and if so, find the limit.

These pages are intended for use as scrap paper.

Trigonometric Identities

Differentiation Formulas

- Pythagorean Identities

$$
\begin{aligned}
& \sin ^{2} x+\cos ^{2} x=1 \\
& \tan ^{2} x+1=\sec ^{2} x \\
& \cot ^{2} x+1=\csc ^{2} x
\end{aligned}
$$

$$
\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a
$$

- Sum and Difference Formulas
$\sin (A \pm B)=\sin A \cos B \pm \sin B \cos A$
$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$

$$
\frac{d}{d x}(\cos x)=-\sin x
$$

$$
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
$$

$$
\frac{d}{d x}(\tan x)=\sec ^{2} x
$$

- Double Angle Formulas

$$
\begin{gathered}
\sin (2 A)=2 \sin A \cos A \\
\cos (2 A)=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan (2 A)=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

- Half Angle Formulas

$$
\begin{aligned}
& \sin ^{2} x=\frac{1-\cos (2 x)}{2} \\
& \cos ^{2} x=\frac{1+\cos (2 x)}{2} \\
& \tan ^{2} x=\frac{1-\cos (2 x)}{1+\cos (2 x)}
\end{aligned}
$$

- Product Formulas

$$
\frac{d}{d x}(\ln |x|)=\frac{1}{x}
$$

$$
\frac{d}{d x}(\sin x)=\cos x
$$

$$
\begin{array}{ll}
\sin A \sin B=\frac{1}{2}(\cos (A-B)-\cos (A+B)) & d x \\
\cos A \cos B=\frac{1}{2}(\cos (A-B)+\cos (A+B)) & \frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}} \\
\sin A \cos B=\frac{1}{2}(\sin (A+B)+\sin (A-B)) & \frac{d}{d x}\left(\csc ^{-1} x\right)=\frac{-1}{|x| \sqrt{x^{2}-1}}
\end{array}
$$

$$
\begin{gathered}
\frac{d}{d x}(\cot x)=-\csc ^{2} x \\
\frac{d}{d x}(\sec x)=\sec x \tan x \\
\frac{d}{d x}(\csc x)=-\csc x \cot x
\end{gathered}
$$

$$
\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}
$$

$$
\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}
$$

$$
\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}
$$

$$
\frac{d}{d x}\left(\cot ^{-1} x\right)=\frac{-1}{x^{2}+1}
$$

Integration Formulas

$$
\begin{gathered}
\int \frac{1}{x} d x=\ln |x|+C \\
\int a^{x} d x=\frac{1}{\ln a} a^{x}+C \\
\int \ln x d x=x \ln x-x+C \\
\int \sin x d x=-\cos x+C \\
\int \cos x d x=\sin x+C \\
\int \tan x d x=\ln |\sec x|+C \\
\int \cot x d x=-\ln |\csc x|+C \\
\int \sec x d x=\ln |\sec x+\tan x|+C \\
\int \csc x d x=-\ln |\csc x+\cot x|+C
\end{gathered}
$$

$$
\int \sec ^{2} x d x=\tan x+C
$$

$$
\int \csc ^{2} x d x=-\cot x+C
$$

$$
\int \sec x \tan x d x=\sec x+C
$$

$$
\int \csc x \cot x d x=-\csc x+C
$$

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+C
$$

$$
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C
$$

$$
\int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1} \frac{|x|}{a}+C
$$

Trigonometric Substitution

$$
\begin{aligned}
& \sqrt{a^{2}-x^{2}} \Longrightarrow x=a \sin \theta \\
& \sqrt{a^{2}+x^{2}} \Longrightarrow x=a \tan \theta \\
& \sqrt{x^{2}-a^{2}} \Longrightarrow x=a \sec \theta
\end{aligned}
$$

